The relationship between the molecular structure of $\left[3,3-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right.$-closo-3,1,2- $\left.\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ and the mechanism of the fluxional behaviour of $\mathrm{M}\left(\mathrm{PR}_{3}\right)_{2}$-units in closo-twelve-atom metallaheteroboranes

 John D. Kennedy ${ }^{\text {d, * }}$
${ }^{\text {a }}$ Chemistry Department, University College, Cork, Ireland
${ }^{\text {b }}$ Chemistry Department, University of Guelph, Guelph, Ontario NIG 2WI, Canada
${ }^{\text {c }}$ Chemistry Department, Dublin City University, Dublin, Ireland
${ }^{\mathrm{d}}$ School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK

Received 3 April 1995

Abstract

The upper limit of the free energy of the barrier to rotation of the platinum bis-phosphine unit in [3,3-($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$-closo-3,1,2$\left.\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] \mathbf{1}$ is $<30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in dichloromethane solution. This relatively low value is similar in magnitude to crystal-packing forces, and compound 1 crystallises from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane solution as a $1: 1$ mixture of two different conformers with significantly different platinum-to- $\mathrm{C}_{2} \mathrm{~B}_{3}$ bonding. These observations lead to the proposal of a general mechanism for the mutual rotation of $\left\{\mathrm{M}_{(}\left(\mathrm{PR}_{3}\right)_{2}\right\}$ units above $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$.

Keywords: Platinum; Carboranc; Mctallacarboranc; Fluxionality; Crystal structure; Mechanism

1. Introduction

The rotation of ML_{2} units such as $\left\{\mathrm{Pt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right\}$ above the five-atom $\mathrm{X}_{2} \mathrm{~B}_{3}$-faces of the heteroborane ligands $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$ and $\mathrm{As}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}$ [1], Scheme 1, occurs in solution. The free energy of the barrier to rotation, $\Delta \mathrm{G}^{\ddagger}$, has been measured for [3,3-($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$-closo-3,1,2-PtC $\left.{ }_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] 1$, vide infra, and is less than 30 kJ mol^{-1}. Extended Hückel molecular orbital calculations of metal-ligand interactions in $\left\{\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\right\}$-containing twelve-vertex metal derivatives of carboranes have been taken to indicate that there are distinct preferences for the conformations of $\left\{\mathrm{Pt}^{2}\left(\mathrm{PH}_{3}\right)_{2}\right\}$-units above $7,8-\mathrm{C}_{2} \mathrm{~B}_{3}$, $7-\mathrm{CB}_{4}$ - and 7,9- $\mathrm{C}_{2} \mathrm{~B}_{3}$-faced ligands. These are shown in Schemes 2(a), (c) and (b) respectively [2], and in many examples these preferences are manifest in the solid state [1-3]. However, it is apparent that this is not

[^0]always the case in metallaheteroborane chemistry; e.g. the crystal structure of $\left[3,3-\left(\mathrm{PPh}_{3}\right)_{2}\right.$-closo-3,1,2$\mathrm{PtAs}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}$] shows a mixture of conformers [1]. We now report the structure of 1 and suggest a mechanism for the rotation of ML_{2} units above heteroborane ligands.

2. Results and discussion

We found that the upper limit of the free energy of the barrier to rotation in [3,3-($\mathrm{PMe}_{2} \mathrm{Ph}_{2}$-closo-3,1,2$\left.\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] 1$ is $<30 \mathrm{~kJ} \mathrm{~mol}^{-1}$. This corresponds to the maximum energy difference between any two rotational conformers in solution and is of a similar magnitude to crystal-packing forces. We have also found that, in the solid-state, there are equal numbers of two quite different conformers in the asymmetric unit of 1 [5]. These molecules, 1A and 1B, clearly have different platinum-to-cage bonding, Fig. 1(a) and (b). The con-

Scheme 1.
formation in molecule 1B, Fig. 1(b), approximates to the "minimum energy" conformer that is expected from the molecular orbital analysis [2]; this has been called the "parallel" conformer. In contrast, the Pt-P(1) vector in 1A almost eclipses the $\mathrm{Pt}-\mathrm{C}(2)$ vector when the molecule is viewed from above the platinum atom, Fig. 1(a). This conformation is rotated by ca. 50° from the "parallel" one, Scheme 2(a), and is approximately halfway between the "parallel" conformation and a "perpendicular"' one, Scheme 2(d), which has not been observed. This is unexpected on the basis of the molecular orbital calculations. A comparison of the $\mathrm{Pt}-\mathrm{C}_{2} \mathrm{~B}_{3}$ distances in 1A and 1B, Fig. 1(a) and (b), confirms that the bonding to platinum is significantly different in these molecules. In $\mathbf{1 A}$ the $\mathrm{Pt}-\mathrm{C}(2)$ and $\mathrm{Pt}-\mathrm{B}(4)$ distances are almost identical at $2.302(7)$ and $2.307(7) \AA$ respectively, and the $\mathrm{Pt}-\mathrm{B}(7)$ and $\mathrm{Pt}-\mathrm{B}(8)$ distances are the same (within two σ) at $2.284(8)$ and $2.265(7) \AA$

Scheme 2.

Fig. 1. (a) Molecule 1A showing the conformation of the PtP_{2} units above the $\mathrm{C}_{2} \mathrm{~B}_{3}$-face with atoms represented as spheres. Interatomic distances (A): $\mathrm{Pt}(3 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A}) 2.515(6), \mathrm{Pt}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A}) 2.302(7)$, $\mathrm{Pt}(3 \mathrm{~A})-\mathrm{B}(4 \mathrm{~A}) 2.307(7), \mathrm{Pt}(3 \mathrm{~A})-\mathrm{B}(7 \mathrm{~A}) 2.284(8), \mathrm{Pt}(3 \mathrm{~A})-\mathrm{B}(8 \mathrm{~A})$ 2.265(7), $\mathrm{Pt}(3 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A}) 2.2875(16), \mathrm{Pt}(3 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A}) 2.2353(16)$; angle $\mathrm{P}(1 \mathrm{~A})-\mathrm{Pt}(3 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A}) 93.11(6)^{\circ}$. (b) Molecule 1B showing the conformation of the PtP_{2} units above the $\mathrm{C}_{3} \mathrm{~B}_{3}$-face with atoms represented as spheres. Interatomic distances (A): $\mathrm{Pt}(3 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B}) 2.529(6)$, $\mathrm{Pt}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B}) \quad 2.574(6), \mathrm{Pt}(3 \mathrm{~B})-\mathrm{B}(4 \mathrm{~B}) \quad 2.264(7), \mathrm{Pt}(3 \mathrm{~B})-\mathrm{B}(7 \mathrm{~B})$ $2.266(7), \mathrm{Pt}(3 \mathrm{~B})-\mathrm{B}(8 \mathrm{~B}) 2.260(7), \mathrm{Pt}(3 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B}) 2.2599(16), \mathrm{Pt}(3 \mathrm{~B})-$ $\mathrm{P}(2 \mathrm{~B}) \mathbf{2 . 2 7 0 5}(15)$; angle $\mathrm{P}(1 \mathrm{~B})-\mathrm{Pt}(3 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B}) 92.33(6)^{\circ}$.
respectively. The $\mathrm{Pt}-\mathrm{C}(1)$ distance of $2.515(6)$ is longer than $\mathrm{Pt}-\mathrm{C}(2)$ by more than $0.2 \AA$. Hence the platinum-to-carborane distances in $\mathbf{1 A}$ suggest an unusual η^{5} -carborane-to-platinum bonding mode which is more like that expected for a CB_{4}-bonded cage than an $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{3}$ one; i.e. in 1A, the platinum could be described as essentially η^{4}-bonded to CB_{3} with a weaker fifth interaction to $\mathrm{C}(1)$. A comparable $\mathrm{Pt}-\mathrm{C}(1)$ distance is observed in [2,2-($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$-closo-2,1,8- $\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$] 2 [5], 2.570 (3) A, in which the $\mathrm{Pt}-\mathrm{B}$ distances are between 2.215(3) and 2.273(3) \AA. In contrast, the $\mathrm{Pt}-\mathrm{C}$ and $\mathrm{Pt}-\mathrm{B}$ distances in 1B are typical of "normal" η^{5} -carborane-to-platinum bonding in $3,1,2-\mathrm{PtC}_{2} \mathrm{~B}_{3}$ platinadicarboranes [3], with $\mathrm{Pt}-\mathrm{C}(1)$ and $\mathrm{Pt}-\mathrm{C}(2)$ distances similar $\{2.529(6)$ and $2.574(6) \AA$ in 1B $\}$ and both about 10% longer than the three $\mathrm{Pt}-\mathrm{B}$ distances $\{2.260(7)$, $2.264(7)$ and $2.266(7) \AA$ in 1B). This conformer can be
described as exhibiting the expected "slippage" distortion towards η^{3} bonding [2-4].

3. Conclusions

Consideration of the structures of 1A and 1B leads us to conclude that, for compounds with low barriers to rotation, the preferred conformations which were deduced from extended Huckel molecular orbital studies may not always be observed in the solid-state. A more sophisticated form of molecular orbital calculation which allows for molecular relaxation is necessary if all conformational preferences are to be interpreted correctly. The experimental observations which we report here suggest a mechanism for the $\left\{\mathrm{Pt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right\}$ unit rotation that occurs in solutions of $\mathbf{1 , 2} 2$ and related compounds [1]. The process is initiated by the ML_{2} unit shifting from the η^{5}-bonded system to an η^{4}-bonded one. This is illustrated for the $7,8-\mathrm{X}_{2} \mathrm{~B}_{3}$-faced ligands in Scheme 3(a) and (b). The shift requires that the ML_{2} unit begins to twist about the face of the heteroborane ligand to maximise the ML_{2}-to-face η^{4}-bonding, Scheme 3(b) and (c). This new conformation may then be "stabilised" by proceeding to another η^{5}-bonded species, 3(d), or it can reverse, i.e. 3(c) to 3(a). If further steps are realised, a succession of $\eta^{5}-\eta^{4}-\eta^{5}$ processes leads to complete rotation of the ML_{2} unit by a "shift-twist" mechanism.

4. Experimental

Synthesis of [3,3-(PMe $\left.{ }_{2} \mathrm{Ph}\right)_{2}$-closo-3,1,2-PtC $\left.\mathbf{P}_{2} \mathbf{B}_{9} \mathrm{H}_{11}\right] 1$ and $\left[2,2-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right.$-closo- $\left.2,1,8-\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] 2$

To a solution of $\mathrm{Cs}\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right](0.100 \mathrm{~g}, 0.376$ mmol) in ethanol ($20 \mathrm{~cm}^{3}$) was added triethylamine $(0.38 \mathrm{~g}, 3.76 \mathrm{mmol})$ and $c i s-\left[\mathrm{Pt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cl}_{2}\right](0.204$ $\mathrm{g}, 0.376 \mathrm{mmol}$). The mixture was heated under reflux for 6 d . The dark yellow solution was filtered and the solvent was removed under reduced pressure (rotatory evaporator, $35^{\circ} \mathrm{C}$). The reaction mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to preparative TLC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane (3:2) as eluant. Two major products were isolated. One, ($R_{\mathrm{f}}=0.3$), was recrystallised from
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (3:2) as orange crystals of [3,3$\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right.$-closo-3,1,2-PtC $\left.\mathrm{B}_{9} \mathrm{H}_{11}\right] \mathbf{1}(0.060 \mathrm{~g}, 26.4 \%)$. (Found: C, $35.90 ; \mathrm{H}, 5.80 . \mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~B}_{9} \mathrm{P}_{2} \mathrm{Pt}$ requires C , $35.80 ; \mathrm{H} 5.50 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 21^{\circ} \mathrm{C}\right), \delta\left({ }^{1} \mathrm{H}\right)$ $($ PMe $)+1.72, \quad N\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right) \quad 10.5 \mathrm{~Hz},{ }^{3} J\left({ }^{195} \mathrm{Pt}-{ }^{1} \mathrm{H}\right)$ +32.6 Hz . Low-temperature ${ }^{1} \mathrm{H}$ NMR of (PMe) groups (ordered as: temperature, δ, peak-width at half height in $\mathrm{Hz}\} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution; $-70^{\circ} \mathrm{C},+1.63,6.6 ;-90^{\circ} \mathrm{C}$, $+1.62,8 ;-110^{\circ} \mathrm{C},+1.62,13: \mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ solution; $-82^{\circ} \mathrm{C},+1.28,7.5 ;-94^{\circ} \mathrm{C},+1.30,8.5$. These data imply that $\Delta \mathrm{G}^{\ddagger}$ has an upper limit of $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $-110{ }^{\circ} \mathrm{C} .{ }^{31} \mathrm{P}$ NMR: $\left(\mathrm{CDCl}_{3}\right) \delta-13.1,{ }^{1} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right)$ $3445 \pm 5 \mathrm{~Hz}$ at $-54^{\circ} \mathrm{C}$; $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-12.6^{1}{ }^{1}\left({ }^{195} \mathrm{Pt}-\right.$ $\left.{ }^{31} \mathrm{P}\right) 3450 \pm 5 \mathrm{~Hz}$ at $-90^{\circ} \mathrm{C}$. A second compound, ($R_{\mathrm{f}}=0.65$), was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($3: 2$), as colourless crystals of $\left[2,2-\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right.\right.$-closo-$\left.2,1,8-\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] 2(0.008 \mathrm{~g}, 3.5 \%)$. (Found: C, 36.20; $\mathrm{H}, 5.90 . \mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~B}_{9} \mathrm{P}_{2} \mathrm{Pt}$ requires C, 35.80 ; H 5.50%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 21^{\circ} \mathrm{C}$): $\delta\left({ }^{1} \mathrm{H}\right)$ (PMe) \{ordered as: δ $\left.\left(\mathrm{N},{ }^{3} J{ }^{195} \mathrm{Pt}^{1}{ }^{1} \mathrm{H}\right) / \mathrm{Hz}\right)+1.72^{(\mathrm{a})}(N 9.1,22.4),+1.53^{(\mathrm{a})}$ (N 9.9, 33.2) , $+1.69^{(b)}(N 9.6,23.5),+1.47^{(b)}(N$ $9.9,33.0$); signals coalesce in pairs ${ }^{(a)}$ and ${ }^{(b)}$ at $-1^{\circ} \mathrm{C}$ (100 MHz spectrum; $\Delta \mathrm{G}_{272}^{\ddagger}=57.8 \pm 1.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$) to give (at $21^{\circ} \mathrm{C}$) $\delta+1.63$ for ${ }^{(\mathrm{a})}$ and +1.66 for ${ }^{(\mathrm{b})}$.

Acknowledgements

The generous loan of Pt salts by Johnson Matthey ple is gratefully acknowledged (TRS). GF thanks the Natural Sciences and Engineering Research Council (Canada) for Grants in Aid of Research, DO'C thanks EOLAS (Ireland), and JDK thanks the SERC, UK. Thanks are due to Dr. B. Stibr and his colleagues in the Czech Republic for a gift of $\mathrm{Cs}\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]$.

References

[1] M. McGrath, T.R. Spalding, X.L.R. Fontaine, J.D. Kennedy and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., (1991) 3223.
[2] D.M.P. Mingos, M.I. Forsyth and A.J. Welch, J. Chem. Soc., Dalton Trans., (1978) 1363.
[3] See for example; E.A. Carroll, M. Green, F.G.A. Stone and A.J. Welch, J. Chem. Soc., Dalton Trans., (1975) 2263; A.J. Welch, J. Chem. Soc., Dalton Trans., (1975) 743.
[4] H.M. Colquhoun, T.J. Greenhough and M.G.H. Wallbridge, J.

Scheme 3.

Chem. Soc., Dalton Trans., (1979) 629, and references cited therein.
[5] Crystal Data for 1: $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~B}_{9} \mathrm{P}_{2} \mathrm{Pt}, M=1207.56$, monoclinic, $P 2_{1} / c, \quad a=12.7387(5), \quad b=21.7062(12), \quad c=17.9793(11) \dot{\mathrm{A}}$, $\beta=99.105(4)^{\circ}, \quad U=4908.8(4) \AA^{3}, Z=8, \quad D_{\mathrm{c}}=1.634 \mathrm{gcm}^{-3}$, $\lambda($ Mo K $\alpha)=0.7093 \AA, \mu($ Mo K $\alpha)=5.91 \mathrm{~mm}^{-1}, \quad F(000)=$ $2352, T=294 \mathrm{~K}, R=0.030, R_{\mathrm{w}}=0.029$ for 6762 observed reflections.
Crystal Data for 2: $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~B}_{9} \mathrm{P}_{2} \mathrm{Pt}, M=603.78$, triclinic, $P \overline{1}$, $a=9.3892(5), b=10.0918(5), c=14.1517(6) \AA_{2} \alpha=81.045(4)$, $\beta=72.233(4), \gamma=76.766(4)^{\circ}, U=1237.7(1) \AA^{3}, Z=2, D_{c}=$ $1.62 \mathrm{gcm}^{-3}, \lambda($ Mo K $\alpha)=0.7093 \AA, \mu($ Mo K $\alpha)=5.9 \mathrm{~mm}^{-1}$, $F(000)=584, T=294 \mathrm{~K}, R=0.018, R_{\mathrm{w}}=0.023$ for $6431 \mathrm{ob}-$ served reflections.
Structure Solution of 1 and 2: - For both structures, data were collected using an Enraf-Nonius CAD4 diffractometer to a maximum θ of 27° for 1 and 30° for 2 , using graphite monochromatized Mo $\mathrm{K} \alpha$ radiation. Data were corrected for Lorentz, polarization and absorption effects. The structures were solved by Patterson and Fourier methods and refined by full-matrix leastsquares calculations using the NRCVAX system of programs [6] on a Silicon Graphics 4D-35 work station. The assignment of
chemical types to the B and C atoms in the $\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$ cages of the two independent molecules of $\mathbf{1}$ was done from an initial inspection of bond length data and peak heights in both F_{0} and difference maps. All non- Pt cage atoms were then refined as " \mathbf{B} " atoms allowing the occupancies to refine. In each cage the two atoms which we had tentatively assigned as " C " atoms refined to the largest occupancies consistent with the initial assignment. The structure was then fully refined to convergence with this assignment. To check the assignment, at the conclusion of the refinment, atoms $C(2 A)$ were treated as "boron", and $\mathrm{B}(4 \mathrm{~A})$ as "carbon"' in further refinement cycles; atom $\mathrm{C}(2 \mathrm{~A})$ as "boron'" refined to much smaller U_{ii} values and atom $\mathrm{B}(4 \mathrm{~A})$ as a "carbon"' refined to much larger U_{ii} values in a manner which indicated that the initial tentative chemical assignment was correct. Figs. 1(a) and 1(b) were prepared with the aid of PLUTON [7] Atomic coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.
[6] E.J. Gabe, Y. LePage, J.P. Charland, F.J. Lee and P.S. White, J. Appl. Cryst., 22 (1989) 384.
[7] A.L. Spek, Molecular Graphics program, University of Utrecht. The Netherlands, 1994.

[^0]: * Corresponding authors.

