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Abstract 

The upper limit of the free energy of the barrier to rotation of the platinum bis-phosphine unit in [3,3-(PMe,Ph),-close-3,1,2- 
PtC,B,H,,] 1 is < 30 kJ mol-’ in dichloromethane solution. This relatively low value is similar in magnitude to crystal-packing forces, 
and compound 1 crystallises from CH,Cl,-hexane solution as a 1: 1 mixture of two different conformers with significantly different 
platinum-to-C,B, bonding. These observations lead to the proposal of a genera1 mechanism for the mutual rotation of {M(PR,),) units 
above C2B,H,,. 
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1. Introduction 

The rotation of ML, units such as {Pt(PMe,Ph),} 
above the five-atom X,B,-faces of the heteroborane 
ligands C,B,H,, and As,B,H, [l], Scheme 1, occurs 
in solution. The free energy of the barrier to rotation, 
AG’, has been measured for [3,3-(PMe,Ph),-close- 
3,1,2-PtC,B,HI1] 1, vide infra, and is less than 30 kJ 
mol-‘. Extended Hückel molecular orbital calculations 
of metal-ligand interactions in (Pt(PH,),}-containing 
twelve-vertex metal derivatives of carboranes have been 
taken to indicate that there are distinct preferences for 
the conformations of {Pt(PH,),}-units above 7,8-C,B,-, 
7-CB,- and 7,9-C,B,-faced ligands. These are shown in 
Schemes 2(a), (c) and (b) respectively [2], and in many 
examples these preferences are manifest in the solid 
state [l-31. However, it is apparent that this is not 
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always the case in metallaheteroborane chemistry; e.g. 
the crystal structure of [3,3-(PPh,),-close-3,1,2- 
PtAs, B,H,] shows a mixture of conformers [ll. We 
now report the structure of 1 and suggest a mechanism 
for the rotation of ML, units above heteroborane lig- 
ands. 

2. Results and discussion 

We found that the upper limit of the free energy of 
the barrier to rotation in [3,3-(PMe,Ph),-close-3,1,2- 
PtC,B,H,,] 1 is < 30 kJ mol-‘. This corresponds to 
the maximum energy differente between any two rota- 
tional conformers in solution and is of a similar magni- 
tude to crystal-packing forces. We have also found that, 
in the solid-state, there are equal numbers of two quite 
different conformers in the asymmetrie unit of 1 [5]. 
These molecules, lA and lB, clearly have different 
platinum-to-cage bonding, Fig. l(a) and (b). The con- 
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Scheme 1. 

formation in molecule lB, Fig. l(b), approximates to 
the “minimum energy” conformer that is expected 
from the molecular orbital analysis [2]; this has been 
called the “parallel” conformer. In contrast, the Pt-P(1) 
vector in 1A almost eclipses the Pt-C(2) vector when 
the molecule is viewed from above the platinum atom, 
Fig. l(a). This conformation is rotated by ca. 50” from 
the “parallel” one, Scheme 2(a), and is approximately 
halfway between the “parallel” conformation and a 
‘ ‘ perpendicular ’ ’ one, Scheme 2(d), which has not been 
observed. This is unexpected on the basis of the molec- 
ular orbital calculations. A comparison of the Pt-C2B, 
distances in 1A and lB, Fig. l(a) and (b), confirms that 
the bonding to platinum is significantly different in 
these molecules. In 1A the Pt-C(2) and Pt-B(4) dis- 
tantes are almost identical at 2.302(7) and 2.307(7) A 
respectively, and the Pt-B(7) and Pt-B(8) distances are 
the same (within two (T) at 2.284(g) and 2.265(7) A 
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Fig. 1. (a) Molecule 1A showing the conformation of the PtP, units 
above the QB,-face with atoms represented as spheres. Interatomic 
distances (A): Pt(3A)-C(lA) 2.515(6), Pt(3AkC(2A) 2.302(7), 
Pt(3A)-B(4A) 2.307(7), Pt(3A)-B(7A) 2.284(g), Pt(3AkB(8A) 
2.265(7), Pt(3A)-P(lA) 2.2875(16), Pt(3A)-P(2A) 2.2353(16); angle 
P(lA)-Pt(3A)-P(2A) 93.11(6y. (bl Molecule 1B showing the con- 
formation of the PtPz units above the C&B,-face with atoms repre- 
sented as spheres. Interatomic distances (AI: Pt(3B)-C(lB) 2.529(6), 
Pt(3B)-C(2B) 2.574(6), Pt(3B)-B(4B) 2.264(7), Pt(3B)-B(7B) 
2.266(7), Pt(3B)-B@B) 2.260(7), Pt(3B)-P(lB) 2.2599(16), Pt(3Bk 
P(2B) 2.2705(15); angle P(lB)-Pt(3B)-P(2B) 92.33(6)“. 

respectively. The Pt-C(1) distance of 2.515(6) is longer 
than Pt-C(2) by more than 0.2 A. Hence the platinum- 
to-carborane distances in 1A suggest an unusual $- 
carborane-to-platinum bonding mode which is more like 
that expected for a CB,-bonded cage than an q5-C,B, 
one; i.e. in lA, the platinum could be described as 
essentially q4-bonded to CB, with a weaker fifth inter- 
action to C(1). A comparable Pt-C(1) distance is ob- 
served in [o2,2-(PMe,Ph),-close-2,1&PtC,B,H,,] 2 [5], 
2.570(3) A, in which the Pt-B distances are between 
2.215(3) and 2.273(3) A. In contrast, the Pt-C and 
Pt-B distances in 1B are typical of “normal” q5- 
carborane-to-platinum bonding in 3,1,2-PtCzB, plati- 
nadicarboranes [3], with Pt-C(1) and Pt-C(2) distances 
similar {2.529(6) and 2.574(6) A in 1B) and both about 
10% longer than the three Pt-B distances {2.260(7), 
2.264(7) and 2.266(7) A in lB}. This conformer can be 
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described as exhibiting the expected “slippage” distor- 
tion towards q3 bonding [2-41. 

3. Conclusions 

Consideration of the structures of 1A and 1B leads US 
to conclude that, for compounds with low barriers to 
rotation, the preferred conformations which were de- 
duced from extended Huckel molecular orbital studies 
may not always be observed in the solid-state. A more 
sophisticated form of molecular orbital calculation which 
allows for molecular relaxation is necessary if al1 con- 
formational preferences are to be interpreted correctly. 
The experimental observations which we report here 
suggest a mechanism for the {Pt(PMe,Ph),} unit rota- 
tion that occurs in solutions of 1, 2 and related com- 
pounds [ll. The process is initiated by the ML, unit 
shifting from the q5-bonded system to an q4-bonded 
one. This is illustrated for the 7,8-X,B,-faced ligands 
in Scheme 3(a) and (b). The shift requires that the ML, 
unit begins to twist about the face of the heteroborane 
ligand to maximise the ML,-to-face v4-bonding, 
Scheme 3(b) and (c). This new conformation may then 
be “stabilised” by proceeding to another $-bonded 
species, 3(d), or it can reverse, i.e. 3(c) to 3(a). If 
further steps are realised, a succession of r$-~~-r~~ 
processes leads to complete rotation of the ML, unit by 
a “shift-twist” mechanism. 

4. Experimental 

Synthesis of [3,3-(PMe,Ph),-close-3,1,2-PtC,B,H,,] 1 
and [2,2-(PMe,Ph),-close-2,1,8-PtC,B,H,,] 2 

To a solution of Cs[7,8-C,B,H,,] (0.100 g, 0.376 
mmol) in ethanol (20 cm3) was added triethylamine 
(0.38 g, 3.76 mmol) and cis-[Pt(PMe,Ph),Cl,] (0.204 
g, 0.376 mmol). The mixture was heated under reflux 
for 6 d. The dark yellow solution was filtered and the 
solvent was removed under reduced pressure (rotatory 
evaporator, 35°C). The reaction mixture was dissolved 
in CH,Cl, and subjected to preparative TLC with 
CH,Cl,-hexane (3:2) as eluant. Two major products 
were isolated. One, (R, = 0.3), was recrystallised from 

3(a) 3(b) 

CH,Cl,-hexane (3: 2) as orange crystals of [3,3- 
(PMe,Ph),-close-3,1,2-PtC,B,H,,] 1 (0.060 g, 26.4%). 
(Found: C, 35.90; H, 5.80. C,,H,,B,P,Pt requires C, 
35.80; H 5.50%). ‘H NMR (CDCl,, 21°C) 6(‘H) 
(PMe) +1.72, N(31P-1H) 10.5 Hz, 35(‘95Pt-1H) 
+ 32.6 Hz. Low-temperature ‘H NMR of (PMe) groups 
(ordered as: temperature, 6, peak-width at half height in 
Hz} CD,Cl 2 solution; -7O”C, + 1.63, 6.6; -90°C 
+ 1.62, 8; - llO”C, + 1.62, 13: CD,C,H, solution; 
- 82°C + 1.28, 7.5; - 94°C + 1.30, 8.5. These data 
imply that AG’ has an upper limit of 30 kJ mol-’ at 
-110°C. 31P NMR: (CDCl,) 6- 13.1, 15(‘95Pt-31P) 
3445 + 5 Hz at -54°C; (CD,Cl,) 6 - 12.6 ‘5(‘95Pt- 
31P) 3450 f 5 Hz at - 90°C. A second compound, 
(R, = 0.65), was recrystallised from CH,Cl,-hexane 
(3 : 2), as colourless crystals of [2,2-(PMe,Ph),-closo- 
2,1,8-PtC2B,Hll] 2 (0.008 g, 3.5%). (Found: C, 36.20; 
H, 5.90. C,,H,,B,P,Pt requires C, 35.80; H 5.50%). 
‘H NMR (CDCl,, 21°C): 6(‘H) (PMe) (ordered as: 6 
(N, 35(195Pt-1H)/Hz) + 1.72’“’ (N 9.1, 22.4), + 1.53’“’ 
(N 9.9, 33.2), +1.69’b’ (N 9.6, 23.5) +1.47’b’ (N 
9.9, 33.0); signals coalesce in pairs @) and (b) at - 1°C 
(100 MHz spectrum; AG&, = 57.8 f 1.2 kJ mol-‘) to 
give (at 21°C) 6 + 1.63 for @) and + 1.66 for (b). 
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